Uniqueness and monotonicity of solutions for fractional equations with a gradient term

نویسندگان

چکیده

In this paper, we consider the following fractional equation with a gradient term su(x) = f(x, u(x), ?u(x)), in bounded domain and upper half space. Firstly, prove monotonicity uniqueness of solutions to by sliding method. order obtain maximum principle on unbounded domain, need estimate singular integrals define Laplacians along sequence approximate points using generalized average inequality. Then Rn + solve difficulties caused term, some new techniques are developed. The paper may be considered as an extension Berestycki Nirenberg [J. Geom. Phys. 5(1988), 237–275].

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some New Uniqueness Results of Solutions for Fractional Volterra-Fredholm Integro-Differential Equations

This paper establishes a study on some important latest innovations in the uniqueness of solution for Caputo fractional Volterra-Fredholm integro-differential equations. To apply this, the study uses Banach contraction  principle and Bihari's inequality.  A wider applicability of these techniques are based on their reliability and reduction in the size of the mathematical work.

متن کامل

Existence and uniqueness of solutions for impulsive fractional differential equations

In this article, we establish sufficient conditions for the existence of solutions for a class of initial value problem for impulsive fractional differential equations involving the Caputo fractional derivative.

متن کامل

Existence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations

‎In this paper‎, ‎we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations‎. ‎By a priori estimates‎, ‎difference and variation techniques‎, ‎we establish the existence and uniqueness of weak solutions of this problem.

متن کامل

Existence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations

In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Qualitative Theory of Differential Equations

سال: 2021

ISSN: ['1417-3875']

DOI: https://doi.org/10.14232/ejqtde.2021.1.58